Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442126

RESUMO

The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Camundongos , Animais , Humanos , Roedores , Vírus da Hepatite B/genética , Serpentes , Replicação Viral , RNA Viral/genética
2.
EMBO Mol Med ; 16(4): 1004-1026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472366

RESUMO

Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.


Assuntos
Antivirais , Hepatite C Crônica , Humanos , Antivirais/farmacologia , Inteligência Artificial , Sistemas Microfisiológicos , Encéfalo
3.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802406

RESUMO

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Assuntos
Interferons , Mitocôndrias , Camundongos , Animais , Mitocôndrias/metabolismo , Vírus do Sarampo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , DNA Mitocondrial
4.
Antiviral Res ; 209: 105461, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396025

RESUMO

Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.


Assuntos
Hepatite B , Hepatite D , Animais , Vírus Delta da Hepatite , Hepatite D/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Hepatite B/genética
5.
J Infect Dis ; 226(5): 891-895, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022749

RESUMO

Single-nucleotide polymorphism in APOBEC3C (resulting in a serine to isoleucine in position 188) is present in approximately 10% of African populations and greatly enhances restriction against human immunodeficiency virus-1 and simian immunodeficiency virus by improving dimerization and DNA processivity of the enzyme. In this study, we demonstrated in culture and in infected patients that hepatitis B virus (HBV) could be edited by APOBEC3CS188I. Using next-generation sequencing, we demonstrated that APOBEC3CS188I led to enhanced editing activity in 5'TpCpA→5'TpTpA context. This constitutes a new hallmark of this enzyme, which could be used to determine its impact on HBV or nuclear DNA.


Assuntos
Citidina Desaminase , Genoma Viral , Vírus da Hepatite B , Citidina Desaminase/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Polimorfismo de Nucleotídeo Único
6.
mBio ; 12(6): e0255721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809467

RESUMO

Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.


Assuntos
Proteína DEAD-box 58/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Mitocôndrias/virologia , RNA Polimerase III/metabolismo , Receptores Imunológicos/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteína DEAD-box 58/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Polimerase III/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
J Biol Chem ; 297(3): 101081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403699

RESUMO

The human APOBEC3A (A3A) cytidine deaminase is a powerful DNA mutator enzyme recognized as a major source of somatic mutations in tumor cell genomes. However, there is a discrepancy between APOBEC3A mRNA levels after interferon stimulation in myeloid cells and A3A detection at the protein level. To understand this difference, we investigated the expression of two novel alternative "A3Alt" proteins encoded in the +1-shifted reading frame of the APOBEC3A gene. A3Alt-L and its shorter isoform A3Alt-S appear to be transmembrane proteins targeted to the mitochondrial compartment that induce membrane depolarization and apoptosis. Thus, the APOBEC3A gene represents a new example wherein a single gene encodes two proapoptotic proteins, A3A cytidine deaminases that target the genome and A3Alt proteins that target mitochondria.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/fisiologia , Mitocôndrias/genética , Proteínas/genética , Proteínas/fisiologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Citidina Desaminase/metabolismo , DNA/genética , Mutação da Fase de Leitura/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Fases de Leitura/genética
8.
BMC Genomics ; 20(1): 858, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726973

RESUMO

BACKGROUND: APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1 cytidine deaminases to chromosomal DNA. RESULTS: Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1 have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be singular, being able to introduce somatic mutations into nuclear DNA with a clear 5'TpC editing context, and to deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B. CONCLUSIONS: At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving rise to off-target editing of mammalian genomes.


Assuntos
Desaminase APOBEC-1/metabolismo , Cromossomos de Mamíferos/genética , Mutação , Desaminase APOBEC-1/química , Desaminase APOBEC-1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples , Ativação Enzimática , Expressão Gênica , Camundongos , Filogenia , Edição de RNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...